Problem 1: 8.10#

##a##

```r
stocks <- read.table(file = "http://www.public.iastate.edu/~maitra/stat501/datasets/stocks.dat",
    col.names = c("JPM", "Citibank", "Wells", "RoyalDutchShell", "ExxonMobil"))
s <- cov(stocks)
```

```r
stocks.pc <- prcomp(stocks)
```

```r
stocks.pc$rotation
```

##b##

```r
s.pc3 <- (stocks.pc$sdev)^2
```

```r
cumsum(s.pc3)/sum(s.pc3)
```

##c##

```r
a <- 0.05
m <- 3
n <- nrow(stocks)

CIB <- cbind((stocks.pc$sdev^2)[1:3]/(1-qnorm(a/(2*m))*sqrt(2/n)),
             (stocks.pc$sdev^2)[1:3]/(1+qnorm(a/(2*m))*sqrt(2/n)))
colnames(CIB) <- c("LCI", "UCI")
```

##d##

"almost 90% of the variance was accounted for in just the first 3 components
it is thus reasonable to describe this data with fewer than the 5 variables measured."

Problem 2: 8.22#

##a##

```r
bulls <- read.table(file="http://www.public.iastate.edu/~maitra/stat501/datasets/bulls.dat")
bulls <- bulls[,3:9]
bulls.pc <- prcomp(bulls)
cumsum(bulls.pc$sdev^2/sum(bulls.pc$sdev^2))
```

"# 80% of variation is explained by 1 factor,
99% of variation is explained by 2 factors"

```r
PCs.proportion.variation.enuff <- function(lambda, q = 1, nobs) {
    den <- sum(lambda) # sum of all the eigenvalues
    num <- sum(lambda[1:q]) # sum of the first q eigenvalues
    if (num/den == 1) return(1)
    else {
        se <- sqrt(2 * sum(lambda[1:q]^2)/(nobs*den^2)) # asymptotic sd of the test statistic
        test.stat <- (num/den - 1)/se
        return(pnorm(test.stat))
    }
}
```
p1 <- dim(bulls)[2]
n <- dim(bulls)[1]
p <- p1 - 1
for (i in 1:(p1 - 1)) cat(i, PCs.proportion.variation.enuff(s, q = i, nobs = nrow(bulls)), "n")
Maitra shows that is no change after two components

bulls.cov <- cov(bulls)
plot(eigen(bulls.cov)$values, type = "b")
Scree plot confirms 1-2 components

b Here are the components:
bulls.pc$rotation
The first component appears to be mainly associated with V4 and V9,
That is, PrctFFB and SaleWt. Since they are positively correlated in PC1
but negatively correlated in PC2, we could think of PC1 as
value of the cow due to PrctFFB and PC2 as value of the cow not due to PrctFFB

c An index is usually considered a constant loading along a factor, which does not
appear to be the case here. It would be possible to force one by taking
SaleHt, SaleWt, and Frame but considering these variables do not form a
component together, it may not explain very much

d
bulls.pcr <- prcomp(bulls, scale = T)
par(mfrow = c(1, 2))
plot(bulls.pc$x[, 2], bulls.pc$x[, 1], xlab = "PC2", ylab = "PC1", main = "PCs using S", col = bulls[, 1] + 20)
plot(bulls.pcr$x[, 2], bulls.pcr$x[, 1], xlab = "PC2", ylab = "PC1", main = "PCs using R", col = bulls[, 1] + 20)
From these plots we can see that, while there is a lot of overlap,
It appears that there may be some separation between a few of the breeds.
There are also a few outliers: one cow scored much higher on PC2 that the others,
another cow was much lower on PC1 than might be expected.

e
First PC...
qqnorm(as.numeric(bulls.pc$rotation[, 1]), main = "Q-Q Plot of PC1")

Following this result, it does not appear as though PC1
follows a normal distribution

Question 3 (a)
ids <- scan("http://www.public.iastate.edu/~maitra/stat501/datasets/zipdigit.dat")
ids <- as.factor(ids)

fit lm on each coordinate
lmfun <- function(y = y, x = x) lmfit <- lm(y ~ x)

lmval <- apply(X = ziptrain, MARGIN=2, FUN = lmfun, x = ids)

use the anova function on the list of lm output provided for each variable

tmp <- lapply(lmval, anova)
pvalues <- sapply(sapply(tmp, "[", 5), "[", 1)

the inner sapply extracts the fifth element of each list item, the outer the
first element.

qvalues <- pvalues * length(pvalues) / rank(pvalues)

sum(qvalues < 0.05)
256

none appear to be significant at the 5% level even after controlling for false
discovery rates
#
Let us now get the 100 most significant pixel coordinates.
#
red.zip <- ziptrain[, order(pvalues)][,1:100]

i.
source(file = "http://www.public.iastate.edu/~maitra/stat501/Rcode/BoxMTest.R")

Box's M-test statistic can not be computed on the entire dataset because of
the inability to invert dispersion matrices. One option is to change the
to utilize a generalized inverse.
#
Or we can take a subset of the variables and check
#
BoxMTTest(X = red.zip[, 1:10], cl = ids)
--
MBox Chi-sqr. df P
--
15203.1238 14866.7559 495 0.0000
--
Covariance matrices are significantly different.
$MBox
0
15203.12
$ChiSq
0
14866.76

$df
495

$pValue
0

For the first ten variables, the null hypothesis is rejected so there is
significant evidence against the null hypothesis at the 5% level for these
first ten coordinates.
Since there is overwhelming evidence against the null in the first ten
coordinates, this points to the strong possibility that the null hypothesis
may not be supported in the presence of the alternative for the entire
coordinates set
#

ii.

Because of the test statistic depending on the inverses of the individual
variances and covariances, we have two options: either stabilize the
dispersion matrix by eliminating some more variables or take generalized
inverses. We will take the generalized inverse route: note that for us, there
is no loss because we will be using a nonparametric bootstrap test, so
we are not hung up about distributional assumptions that are lost in the
process.
#
The function ginv in the MASS library can be used to calculate the generalized
inverse of a matrix.
#
library(MASS)

get a list of the generalized inverses of the individual variance-covariance
matrices

Sinvlist <- tapply(as.matrix(red.zip), rep(ids, ncol(red.zip)),
functional(x, nc) ginv(cov(matrix(x, nc = nc))),
ncol(red.zip))

sqrtmat <- function(mat) {
 ed <- eigen(mat, symmetric = T)
 return((ed$vectors)%*%diag(sqrt(ifelse(ed$values >= 0, ed$values, 0)))%*%t(ed$vectors))
}

Sqrtinvlist <- lapply(Sinvlist, sqrtmat)
getMLEs <- function(X, ids, Sinvs)
{
 #The "denominator" term in the estimate
t1 <- matrix(data=0, nrow=ncol(X), ncol=ncol(X))
 #The "numerator" term in the estimate
t2 <- numeric(length=ncol(X))
 #The sample mean of observations for
 # each group is the MLE of the
 # population mean for the group under
 # the alternative hypothesis of
 # different means for each group
 Xbar <- apply(X, MARGIN=2, FUN=function(x) tapply(x, INDEX=ids, FUN=mean))
 for (i in 0:9) {
 Xi <- X[ids==i,]
 n <- ns[i+1]
 Sinv <- Sinvs[[i+1]]
 mui <- Xbar[i+1,]
 t1 <- t1+n*Sinv
 t2 <- t2+n*Sinv%*%mui
 }
 #compute the MLE under H0 from the two
 #sums
 muhat <- solve(t1)%*%t2
 return(list(MLE0=muhat, MLE1=Xbar))
}

mles <- getMLEs(X = red.zip, ids = ids, Sinvs = Sinvlist)

Find the likelihood ratio test statistic (-2log(lambda)).
LRTest <- function(X, Sinvs, id)
{
 #obtain the MLEs under H0 and H1
 mle <- getMLEs(X, id, Sinvs=Sinvs)
 MLE0 <- mle$MLE0
 MLE1 <- mle$MLE1
 LRT <- 0
 #compute the likelihood ratio test statistic
 ns <- table(ids)
 for (i in 0:9) {
 Sinv <- Sinvs[[i+1]]
 n <- ns[i+1]
 }
Xbar <- MLE1[(i+1),]
LRT <- LRT+n*t(Xbar-MLE0)%*%Sinv%*%(Xbar-MLE0)
}
return(LRT)
}

Calculate the residuals under H0 with data X. ids and generalized inverses
resids.data <- function(X, ids, Sinvs, SqrtSinv, mles) {
m <- nrow(X)
p <- ncol(X)
resids <- matrix(data=0, nrow=m, ncol=p)
for (i in 0:9)
{
 #MLEs
 Xi <- X[ids==i,]
 #subtract the MLE for mu from all rows
 resids1 <- sweep(Xi, MARGIN=2, STATS=mles$MLE0, FUN="-")
 Sinv <- SqrtSinv[(i+1)]
 #calculate the standardized residuals
 #resids2 <- apply(resids1, MARGIN=1, FUN=function(x, Sinv)
 # as.matrix(x)%*%Sinv, Sinv = Sinv)
 resids2 <- as.matrix(resids1)%*%Sinv
 resids[ids==i,] <- resids2
}
return(resids)
}

resids <- resids.data(X = red.zip, ids = ids, Sinvs = Sinvlist,
 SqrtSinv = Sqrtinvlist, mles = mles)

#Function to convert the residuals back into the original scale. X should be
#one of the bootstrapped datasets which has variables in rows and observations
#in columns. MLE0 is the MLE of mu under H0.
convert.resid <- function(X, ids, Ssqrts, mles) {
{
 #The bootstraped datasets have variables
 # in rows and observations in columns,
 # which is less intuitive
 X <- t(X)
m <- nrow(X)
p <- ncol(X)
bootvals <- matrix(data=0, nrow=m, ncol=p)
for (i in 0:9)
{
 #get the appropriate of rows from the
 #dataset
 Xi <- X[ids==i,]
 #get the square root matrix

Question 3 (b)
#
#
It is reasonable to use the variance-covariance matrix because the
observations are measured on the same scale and arguably pixels with greater
variability in intensity should contribute more. So we perform PCA on the
matrix

ziptrain.pc <- prcomp(ziptrain, retx = T)

 #Proportion of variance explained
pc.sum <- cumsum(ziptrain.pc$sdev^2)/sum(ziptrain.pc$sdev^2)

source("http://www.public.iastate.edu/~maitra/stat501/Rcode/
Pcs.proportion.variation.enuff.R")
for (i in 1:256) cat("i = ", i, PCs.proportion.variation.enuff(lambda=ziptrain.pc$sdev^2, q = i, propn=0.8, nobs=2000), ","n")

26 PCs included.

#using radviz
source("http://www.public.iastate.edu/~maitra/stat501/Rcode/radviz2d.R")
source("http://www.public.iastate.edu/~maitra/stat501/Rcode/mmnorm.R")
source("http://www.public.iastate.edu/~maitra/stat501/Rcode/circledraw.R")
par(mfrow = c(2,1))

radviz2d(dataset = cbind(ziptrain, ids), name = "PCs of Zip")

radviz2d(dataset = cbind(ziptrain.pc$x[,1:26], ids), name = "PCs of Zip")

#
because of scaling issues when using PCs, the original plot actually looks
more distinct.
#
#
test for homogeneity of dispersions
#
BoxMTest(X = ziptrain.pc$x[,1:26], ids)

 # MBox Chi-sqr. df P
 # 60012.3244 56636.7491 3159 0.0000

Covariance matrices are significantly different.
$MBox
0
60012.32

ChiSq
0
56636.75

df
[1] 3159

pValue
0
0

Not unexpectedly, the dispersions are different

Spcinvlist <- tapply(as.matrix(ziptrain.pc$x[,1:26]),
rep(ids, ncol(ziptrain.pc$x[,1:26])),
function(x, nc) ginv(cov(matrix(x, nc = nc))),
ncol(ziptrain.pc$x[,1:26]))

Sqrtpcinvlist <- lapply(Spcinvlist, sqrtmat)

mles.pc <- getMLEs(X = ziptrain.pc$x[, 1:26], ids = ids, Sinvs = Spcinvlist)

resids.pc <- resids.data(X = ziptrain.pc$x[, 1:26], ids = ids,
Sinv = Spcinvlist, SqrtSinv = Sqrtpcinvlist,
mles = mles.pc)

boot.sam.pc <- bootstrap(X = ziptrain.pc$x[,1:26], nrep = 101, ids = ids,
Ssqrts = Sqrtpcinvlist, Sinvs = Spcinvlist,
resids = resids.pc, mles = mles.pc)

lrt.stat <- as.vector(LRTTest(X = ziptrain.pc$x[,1:26], Sinvs = Spcinvlist,
id = ids))

[1] 70852.37
#
H_0 not rejected at the 5% level,